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ABSTRACT: Simulations of evolution of cure-induced stresses in a viscoelastic thermoset resin are presented. The phenomenology

involves evolution of resin modulus with degree of cure and temperature, the development of stresses due to crosslink induced

shrinkage, and the viscoelastic relaxation of these stresses. For the simulations, the detailed kinetic and chemo-thermo-rheological

models for an epoxy-amine thermoset resin system, described in Eom et al. (Polym. Eng. Sci. 2000, 40, 1281) are employed. The

implementation of this model into the simulation is facilitated by multiphysics simulation strategies. The trends in simulated cure-

induced stresses obtained using the full-fledged viscoelastic model are compared with those obtained from two other equivalent mate-

rial models, one involving a constant elastic modulus, and the other involving a cure-dependent (but time-invariant) elastic modulus.

It is observed that the viscoelastic model not only results in lower estimates of cure-induced stresses, but also provides subtle details

of the springback behavior. VC 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 000: 000–000, 2012
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INTRODUCTION

Accurate predictions of residual stresses in thermoset resins,

adhesives, and composites require detailed accounting of multi-

ple phenomena—mold-part interaction, cure shrinkage strains,

thermal strains, the kinetics of resin cure, and the evolution of

the resin properties with temperature and degree of cure. Resid-

ual stress development and shape distortions in thick thermoset

sections are further influenced by large temperature gradients

across the thickness driven by the exothermic heat of reaction.

The resin modulus, a key parameter governing the magnitude

of residual stresses, is a strong function of the degree of cure

(a) and the temperature history. During the course of crosslink-

ing, the resin, starting from a viscous state, can evolve into a

rubbery gel (a ductile thermoset) or, upon vitrification, become

a glass (a brittle thermoset). In addition to cure and tempera-

ture dependence, the curing resin also displays time dependent

stress relaxation, governed by intrinsic relaxation times that are

functions of the degree of cure and the temperature.1–4

To describe accurately the evolution of stresses within a thermo-

set during cure, it is imperative to capture in detail the time-,

cure, and temperature dependent evolution of the resin modu-

lus. Complex kinetic and thermo-chemo-rheological models

that account for diffusion effects in kinetics and rheological

complexity of the curing resin have traditionally been difficult

to implement in finite element schemes, necessitating simplify-

ing assumptions. With the development of advanced computa-

tional methods involving multiphysics capabilities this complex-

ity may be addressed in a logical fashion. In this report,

multiphysics based finite element simulations of evolution of

cure-induced residual stresses in a thermoset system are pre-

sented. The simulations employ a comprehensive semiempirical

material model developed by Eom et al.1 The kinetic and

chemo-thermo-rheological model described by Eom et al, cap-

tures in detail the cure- and temperature-dependence of the

viscoelastic stresses within the curing resin while accounting for

the chemo-thermo-rheological complexity of the curing resin

(different mechanisms of stress relaxation prior to and post

gelation). Diffusion limited regimes in the cure kinetics of the

thermoset are also accounted for in this scheme.

BACKGROUND: CHEMO-THERMO-RHEOLOGICAL MODELS
FOR CURING THERMOSETS

The instantaneous stress rðtÞ in a curing thermoset resin during

relaxation following the application of a strain c is represented
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in the form of a relaxation modulus, GrðtÞ ¼ rðtÞ=c. The

relaxation modulus is a very strong function of the tempera-

ture of curing and the degree of cure (with additional relaxa-

tion mechanisms introduced at gel point (a ¼ agel) where the

relaxation curve starts developing a prominent rubbery pla-

teau). A comprehensive time-temperature-cure superposition

model, that correlates in detail the stress relaxation behavior

Grðt ;T ; aÞ at any given temperature, T , and degree of cure, a,
to that at a given reference temperature (Tref ) and the refer-

ence conversion (aref ) needs to be arrived at.1–4 This generic

framework, using a generalized multimode Maxwell model,

with each relaxation mode i characterized by a stiffness, Gi ,

and a relaxation time constant, ki (Ref. 4), may be described

as below

Grðt ;T ; aÞ ¼ G1 þ
Xp
i¼1

Gi ðaref ÞAG exp
�t

ðki;Trefaref AT AaÞ

� �
(1)

G0ðT ; aÞ ¼ G1 þ
Xp
i¼1

Gi ðaref ÞAG

AT jaref¼
ki

ki;Tref

����
aref

and AajTref
¼ ki

ki;aref

����
Tref

(2)

The temperature-time shift factor, AT and the cure-time shift

factor, Aa, can be derived from the Williams–Landel–Ferry

(WLF) framework,5 along with relationships for dependence of

Tg with the degree of cure (e.g., DiBenedetto equation6). In

addition, the shift factor AG, typically derived from the theory

of rubbery elasticity,7 captures the increase of the resin modulus

with degree of cure, G0ðaÞ. Simon et al.,8 Prasatya et al.,9 and

Hojjati et al.,10 have reported the use of the WLF framework

(and DiBenedetto relationship) for calculation of cure-time and

temperature-time shift factors, from dynamic shear and stress

relaxation data measured during thermoset cure.

The assumption of thermo-chemo-rheological simplicity

(employed in Refs. 8–10) does not apply for the entire dura-

tion of cure, involving transition in the relaxation behavior of

the resin, from a viscous liquid at lower conversions (a < agel)
to that of a rubbery gel, with additional relaxation mechanisms

being introduced at gel point a ¼ agel. Therefore, these experi-

mental investigations,8–10 and the associated cure-time-temper-

ature shifts are restricted to the conversion-range a > agel. In
this context, the cure-temperature-time superposition

approach of Eom et al.,1 while more empirical compared to

that employed in Refs. 8–10, offers the cure-dependent shift

factors for the entire conversion range and thus addresses the

cure-dependent viscoelastic property development more

comprehensively.

In this report, the evolution of cure induced stresses in the visco-

elastic epoxy-amine thermoset resin from the study of Eom

et al.1 is simulated. The cure- and temperature-dependence of

resin viscoelasticity is accounted for using the cure-temperature-

time superposition approach proposed by Eom et al.1 While this

approach offers a more comprehensive description of the cure

and temperature dependent resin property evolution, it also

results in more complex expressions for description of the prop-

erty evolution of the resin compared to those in Refs. 8–10. To

facilitate faithful implementation of the model without any sim-

plifying assumptions, multiphysics capabilities of a commercially

available multiphysics FEM code offered by COMSOL11 are

employed. The simulated trends in viscoelastic stresses at differ-

ent degrees of cure and temperatures are compared and con-

trasted with those obtained from two other equivalent material

models—one involving a constant (cure- and temperature-inde-

pendent) elastic modulus, and another involving a cure-depend-

ent (but time-invariant) elastic modulus. Finally, the material

models are implemented in the context of the cure of a thick

thermoset resin part, to explore the combined effect of multiple

phenomena—mold-part interaction, cure shrinkage strains, ther-

mal strains, and the exothermic heat of reaction resulting in a

two way coupling between heat transfer and chemical kinetics—

on the evolution of residual stresses and springback

MATERIAL MODEL

In this section, the models for cure kinetics, and cure- and tem-

perature-dependent viscoelastic behavior—that form the inputs

for cure stress simulations presented subsequently—are described.

These material models are for an epoxy-amine thermoset resin

that has been characterized in detail by Eom et al.1

Cure Kinetics

The kinetics of the cure of this resin system is characterized by two

distinct regimes: autocatalytic kinetics12 at low conversions, and dif-

fusion-limited nth order kinetics13 at higher conversions. The auto-

catalytic model, valid in the conversion (a) range 0–0.5, is given as:

da
dt

¼ K1 þ K2a
mað Þ 1� að Þna (3)

K1 ¼ K01 exp
�E01

RT

� �
(4)

K2 ¼ K02 exp
�E02

RT

� �
(5)

where K1 and K2 are the temperature-dependent rate constants

and ma and na are temperature independent exponents. K01 and

K02 are the temperature independent pre-exponential factors, and

E01 and E02 are the activation energies associated with K1 and K2,

respectively. R is the universal gas constant. These parameters,

evaluated by Eom et al.,1 are listed in Table I. The nth-order

model, applicable at higher conversions (a > 0.5) is given as:

da
dt

¼ Keff 1� að Þn (6)

In the above expression, n is the reaction order. Keff is the over-

all effective reaction rate constant that takes into account both

chemical and diffusion aspects that control the kinetics at high

conversions.14 Keff is given as,

Keff ¼
K

1þ exp½Cða� acÞ�
(7)

K ¼ K0 exp
�E0

RT

� �
(8)
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In the above expressions, K is the rate constant for chemical

kinetics (non diffusion-controlled), C is a constant, and ac is a

critical conversion above which Keff starts to deviate from K

(diffusive effects come into play). K0 and E0 are the pre-expo-

nential factor and the activation energy, respectively, associated

with K . Eom et al.’s estimates1 for these kinetic parameters for

the epoxy-amine resin system are also listed in Table I. It is

clear from Table I that the diffusion effects, as quantified by

n and ac, are strongly governed by the temperature of cure;

at comparable degrees of cure, the stearic hindrance to diffusion

of the reacting moieties is more significant at lower

temperatures.

The simulated evolution of conversion as a function of time for

isothermal cure of the epoxy-amine system is plotted in Figure

1 at four different isothermal cure temperatures, ranging from

155 to 170�C. It can be seen that diffusion effects prevent the

cure reaction from reaching completion, and the final degree of

cure shows progressive decrease with reduction of cure

temperatures.

Experimental Cure-Temperature-Time Shift Calculations1

The viscoelastic properties of the curing thermoset resin were

also studied by Eom et al.1 using isothermal dynamic shear

modulus measurements. The dynamic shear storage modulus at

a given frequency, f, was taken to correspond to the relaxation

modulus at time, t ¼ 1/f (cf. Ref. 3). The data for the relaxation

moduli thus evaluated for the curing epoxy system were

obtained for several degrees of cure, at a given cure tempera-

ture. The master curve of the viscoelastic response was then

obtained at the reference conversion, by shifting the data at a

given conversion on the logarithmic time axis until it neatly

overlapped (or followed) the curve at the reference conversion.

The logarithmic time difference between the real time t (corre-

sponding to the data for the actual conversion) and the shifted

(or reference) time n (corresponding to the location of the

shifted data on the master curve) directly provided the

logarithm of the shift factor (Ax): logAx ¼ log t � log n. In

other words:

Ax ¼
t

n
(9)

At low conversions, the shift factors followed a logarithmic rela-

tionship with conversion. However, beyond the gel point (agel
�0.7), the shift factors were observed to vary differently with

conversion. This is indicative of the introduction of additional,

and significantly different, relaxation mechanisms for the par-

tially crosslinked gel that comes into existence post gel-point,

compared to the relatively less crosslinked viscous resin that was

present up to the onset of gelation. Also, up to a �0.7, Eom

et al.1 observed no variation in the magnitude of the shift fac-

tors (at a given conversion) with change in cure temperature.

However, at higher conversions, the shift factors were seen

to deviate, following the order of increasing cure temperature.

Clearly, this is the impact of the choice of the reference conver-

sion—equal to the maximum achievable degree of cure at a

given temperature—which is a strong function of the diffusion

effects following gelation, and hence the temperature of cure.

The observed trends in shift factors with respect to the degree

of cure and the temperature were then fitted by Eom et al.1

using two empirical shift models, to account for the two conver-

sion regimes—before, and after, the onset of gelation. In the

conversion range 0.0–0.7, only the cure-dependence of the shift

factors needs to be accounted for, since they were observed to

be temperature invariant:

logAx ¼ C1 aþ C2 (10)

The constants C1 and C2, evaluated by Eom et al. are listed in

Table II. For the conversion range 0.7–1.0, in which gelation

effects become dominant, Eom et al.1 accounted for the depend-

ency of the shift factor on both conversion and temperature,

using the relationship shown in eq. (11).

logAx ¼ Agel H
ða�agelÞ af � a

af � agel

� �ms

(11)

Table I. Kinetic Parameters Calculated from Isothermal Cure of Epoxy-

Amine, for Autocatalytic Model at Low Conversions, and for nth-Order

Model at High Conversions (from Eom et al.1)

Parameter Value

Autocatalytic model (conversion range 0.0–0.5) [eq. (3)]

K01 (1/s) 2.7321 � 105

K02 (1/s) 3.8231 � 105

E01 (J/mol) 7.2776 � 104

E02 (J/mol) 6.6934 � 104

ma 1.07

na 2.43

Nth-order model (conversion range 0.5–1.0) [eq. (6)]

K0 (1/s) 29.10

E0 (J/mol) 3.58 � 104

n �0.0403 � T (K) þ19.48

C 69

ac 0.0092 � T (K) � 3.14

Figure 1. Calculated conversion of epoxy under isothermal curing condi-

tions at four isothermal cure temperatures (�C, indicated in the legend).
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With the boundary conditions,

logAx ¼ Agel at a ¼ agel and logAx ¼ 0 at a ¼ af (12)

The above definition of shift factor, along with the definition of

the temperature dependent parameters af and ms , (refer to

Table II) provides a complete description of both the conversion

and temperature dependence of the viscoelastic response beyond

gelation, agel, and also accounts for the temperature dependence

of the limiting conversion af . These parameters, as evaluated by

Eom et al. are also listed in Table II.

The shear stress relaxation master curve can be described using

the generalized Maxwell model (with shifted times, n).

Grðn;T0Þ ¼ G1 þ
Xp
i¼1

Gi exp
�n
ki

� �
(13)

To account for the growth of G0 with the degree of cure [refer

to eq. (2)], Eom et al.1 modeled the series coefficients of the

relaxation spectrum using the phenomenological relationship

shown in eqs. (14) and (15).

Gi ¼ Gs0
Gu0

Gs0

� �D

(14)

D ¼ ½1� ð1� npÞBki�
1

1�np (15)

Gs0 is the minimum measurable relaxed modulus, Gu0 is the un-

relaxed modulus at the reference conversion, D is a parameter

that determines the shape of the relaxation curve (which, in

turn, is governed by the relaxation times, ki , of the resin), B is a

temperature dependent material parameter, and np is a material

constant. Eom et al.1 employed different values for parameters in

eqs. (14) and (15) in the conversion ranges before and after gela-

tion. These parameters are listed in Table II. G1 was assigned a

value of 0.01 Pa. Typically, the modulus would decay all the way

to G1 within timescales of practical interest only at low degrees

of cure (significantly below gel point) and temperatures substan-

tially above the glass transition temperature of the thermoset.

Viscoelastic Model with Cure-Temperature-Time Shift

The viscoelastic material model implemented in the current

simulation study captures all the features of the temperature-

cure-time superposition model described in the earlier section,

and has been implemented with the 34 relaxation time con-

stants employed by Eom et al.1 The viscoelastic response before

gelation (corresponding to long times on the master curve) is

described by employing 15 series coefficients with relaxation

times ranging from 1018 to 1042 s (with one decade increments

between 1018 and 1022 s, and two decade increments from 1022

to 1042 s). The response after gelation (corresponding to shorter

times on the master curve) is described using 19 more series

coefficients, with relaxation times ranging from 10�1 to 1017 s

(with one decade increments). It should be noted that these

relaxation time constants describe the relaxation master curve,

at the limiting degree of cure at 170�C. Eom et al.1 incorporated

the extremely long relaxation times to accurately describe the

intermediate rubbery plateau modulus and the subsequent com-

plete relaxation of stresses. The 34-mode master relaxation spec-

tra (Gi ,ki) evaluated using eqs. (14) and (15), at four different

temperatures, with the parameters in Table II, are plotted in

Figure 2.

In the cure simulations employing the Eom et al.1 model, the

relaxation time of the resin at any given conversion, a, can be

calculated by shifting the relaxation times at the reference con-

version to the instantaneous conversion.

kia ¼ Axki (16)

The corresponding relaxation of shear modulus in real time,

Grðt ;T ; aÞ, at different conversions can then be calculated by

employing the shifted relaxation times, kia, as shown in eq. (17)

Grðt ;T ; aÞ ¼ G1 þ
Xp
i¼1

Gi exp
�t

kia

� �
(17)

The shear relaxation moduli at 170�C, calculated using eq. (17),

are plotted in Figure 3 at different conversions. It is clear from

this plot that the relaxation of stresses is fairly rapid even

beyond the gel point conversion (0.7), and significant elasticity

(the ability to hold the stresses) is developed only close to the

limiting conversion. The bulk modulus, k , and the elastic mod-

ulus, E of the curing resin are then calculated from the shear

relaxation modulus, assuming a constant Poisson’s ratio, m ¼
0.4, as shown below.15

Eðt ;T ; aÞ ¼ 2ð1þ mÞGrðt ;T ; aÞ (18)

k ðt ;T ; aÞ ¼ 2ð1þ mÞGrðt ;T ; a
3ð1� 2mÞ (19)

Table II. Parameters for the Shift Factor Model for Cure-Temperature-

Time Superposition, and for Generation of the Series Coefficients of the

Linear Viscoelastic Model (from Eom et al.1)

Parameter Conversion: 0.0–0.7 Conversion: 0.7–1.0

Parameters for evaluation of time-cure-temperature
shift factors

C1 30.6 –

C2 �39.7 –

Agel – �17.5

H – 2

agel – 0.7

af – 0.0074 T (K) � 2.32

ms – 0.0346 T (K) � 14.23

Parameters for evaluation of series coefficients of the
linear viscoelastic model

G1 0.01 0.01

Gs0 1.0 � 10�4 1.0 � 103

Gu0 1 � 104 1.5 � 108

log(B) 0.1 T (K) � 62.8 0.332 T (K) � 149

np 10 22
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Elastic Models

In addition to the cure- and temperature-dependent viscoelastic

material model, two additional equivalent elastic material mod-

els were considered. The first was a cure- and temperature-de-

pendent (but time invariant) elastic material model. In this

model, the magnitude of the elastic shear modulus at any given

degree of cure was set to the value of the viscoelastic shear

relaxation modulus at extremely small times, at the same degree

of cure.

Gcure elasticðT ; aÞ � Grðt ¼ 10�12s;T ; aÞ (20)

In this model, while the cure dependence of G0 is captured, its

relaxation is not accounted for. Gcure elastic is plotted against the

degree of cure at 170�C in Figure 4. Comparing Figures 3 and

4, it is clear that Gcure elastic at any given degree of cure is equiv-

alent to the magnitudes of the shear relaxation moduli at the

smallest times at the corresponding conversion. Consequently,

the bulk and the Young’s moduli are also cure dependent, but

do not relax with time [and are calculated using

Gcure elasticðT ; aÞ analogously to eqs. (18) and (19), respectively].

Finally, a temperature-dependent (but time as well as cure

invariant) elastic material model was considered. In this model,

the magnitude of the elastic shear modulus at any given temper-

ature was set to a value of the viscoelastic shear relaxation mod-

ulus at extremely small times at the maximum achievable degree

of cure, af , corresponding to that temperature, as shown below.

Gconst elasticðTÞ � Grðt ¼ 10�12s;T ; a ¼ af Þ (21)

In this model, only the temperature dependence of the modulus

of the fully cured resin (at af ) is accounted for, and its relaxa-

tion is not accounted for. Consequently, the bulk and Young’s

moduli are also cure invariant and do not relax with time [and

are calculated using Gconst elasticðTÞ analogously to eqs. (18) and

(19), respectively].

MATERIAL MODEL IMPLEMENTATION

The cure stress simulations using the cure-kinetics and the

time-cure-temperature shift scheme described in earlier sections,

were implemented for the viscoelastic and elastic material mod-

els (described in the foregoing) in COMSOL Multiphysics
VR

—

Version 3.5a. The additional resin parameters required for these

simulations are listed in Table III, and were assigned typical val-

ues for thermoset epoxy resins (e.g., Ref. 16, 17). The visco-

elastic model implementation in COMSOL
VR

, summarized

below, was verified using two model load case scenarios. Finally,

we describe the implementation of the material models in the

context of the cure of a thick thermoset resin part, to explore

the combined impact of global constraints, reaction exotherm,

and spatial variation in temperature and degree of cure on the

evolution of residual stresses and springback.

COMSOL Multiphysics
VR

Implementation of Viscoelastic

Model11

The generalized Maxwell model shown in eq. (17) may be

expressed as a Prony series, as shown in eq. (22).

Grðt ;T ; aÞ ¼ G0 l1 þ
Xp
i¼1

li exp
�t

kia

� �" #
(22)

Figure 2. Series coefficients for the relaxation spectrum of the epoxy-

amine resin as a function of the relaxation times at four different temper-

atures (�C, indicated in the legend).

Figure 3. Shear relaxation modulus as a function of time at different con-

versions at 170�C.

Figure 4. Evolution of shear relaxation modulus at extremely short

times—equivalent to cure-dependent elastic modulus [eq. (20)]—as a

function of degree of cure at 170�C.
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In the above equation, the coefficient li can be considered to

be the relative stiffness (Gi represents the absolute stiffness) of

the spring in branch i of the generalized Maxwell model.4

li �
Gi

G0

; l1 � G1
G0

(23)

l1 þ
Xp
i¼1

li ¼ 1 (24)

In the COMSOL Multiphysics
VR

implementation of viscoelastic-

ity, the viscous portion of the deformation is set to be incom-

pressible, and any volume change associated with stress relaxa-

tion is purely elastic.11 This assumption, along with the

representation of the relaxation modulus in eq. (22) leads to the

development of the differential equation form of the viscoelastic

model—shown in eqs. (25)–(39), along with eq. (24). The over-

all stress, r, has contributions from an isotropic (pressure) com-

ponent, p, and a deviatoric stress component, s.

r ¼ s� pI (25)

The isotropic component of the stress is defined in terms of the

bulk modulus, k , and isotropic strains:

p ¼ �k � traceðeÞ ¼ �k � ðe11 þ e22 þ e33Þ (26)

The deviatoric strains are defined as:

edeviatoric ¼ e� 1

3
traceðeÞ � I (27)

The components of the deviatoric part of the stress tensor, s,
and the deviatoric strains are related through the generalized

Maxwell model, by introducing the variable qi, that is equivalent

to the extension of the spring in branch i of the generalized

Maxwell model, as shown in eqs. (28) and (29).

s ¼ 2G0 l1edeviatoric þ
Xp
i¼1

liqi

 !
(28)

_qi þ
1

ki
qi ¼ _edeviatoric (29)

Model Load Cases for Verification of Viscoelastic Model

Implementation

The 2D geometry employed for the model load case simulations

is shown in Figure 5(a,b). All the simulations were carried out

under isothermal conditions. The coefficient of thermal expan-

sion was assumed to be zero in all simulations, thereby not

accounting for any thermal strains. Assuming the body forces to

be negligible, the momentum balance equation:

r � r ¼ 0 (30)

was implemented in the geometry shown in Figure 5 using the

plane strain approximation, in which the geometry is considered

infinitely long in z- (3-) direction, thereby making it possible to

ignore any normal or shear strains in that direction:

e33 ¼ e23 ¼ e13 ¼ 0 (31)

Two different loading scenarios were investigated to study the

response of the viscoelastic and the elastic material models. The

first scenario involved the near instantaneous application of a fi-

nite strain and simulating the state of purely mechanical stresses

while the finite strain is held constant. This constitutes a typical

stress relaxation experiment for a viscoelastic material. The sec-

ond scenario involved simulation of the evolution of stresses

due to chemical crosslink induced shrinkage in a fully con-

strained resin undergoing isothermal cure.

Mechanical Stress Evolution in Step-Strain Experiments

In this set of isothermal simulations, the geometry was assigned

a constant and uniform temperature (Tref). The chemical

kinetics was not solved for; instead, the degree of cure was a

priori assigned. At this assigned degree of cure, and Tref, the

time-cure-temperature shift factors were calculated using either

eq. (10) or eqs. (11) and (12) (depending on whether a < agel
or a � agel). The relaxation spectrum was calculated using eqs.

(14) and (15), and employing the parameters given in Table II

(once again, the choice of parameters was depending on

whether a < agel or a � agel). The viscoelastic shear relaxation

modulus was then evaluated by employing the relaxation spec-

trum and the shift factors, using eqs. (16) and (17). The cure

dependent elastic modulus, at the assigned degree of cure, was

then set to a constant value as shown in eq. (20).

For this set of simulations, the cure-induced shrinkage strain

was ignored, and only purely mechanical strains were consid-

ered. As shown in Figure 5(a), an overall mechanical tensile

strain of 0.05 was imposed on the longer dimension of the ge-

ometry using a rapid constant-velocity strain ramp within 0.005

s, and then this strain was maintained for the remaining por-

tion of the simulation.

e11 ¼ eMechanical
11 ¼ 0 ðt ¼ 0sÞ

¼ 0:05 ðt � 0:005sÞ (32)

The evolution of mechanical stresses in the step-strain experi-

ments were simulated at four different degrees of conversion

above the gel point at 170�C, and at three different tempera-

tures at a conversion of 0.8.

Table III. Magnitudes of Relevant Thermal, Chemical, and Mechanical

Properties of the Resin Employed for Calculation of Cure-Induced Stresses

Density (kg/m3) q 1.2 � 103

Specific heat (J/kg K) CP 1.25 � 103

Heat of reaction (J/mol) DHreaction 100,000

Thermal conductivity (W/m K) k 0.2

Poisson’s ratio m 0.4

Coefficient of thermal
expansion (ppm/K)

v 100

Specific volumetric
shrinkage during cure (%)

DVshrinkage 6.0

These values are typical of epoxy resins (e.g., Refs. 16 and 17) and are
therefore assumed to apply to the epoxy-amine system of Eom et al.1

These properties are not reported in Eom et al.
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The simulated stresses associated with rapid imposition of

extensional strain at 170�C are plotted for three different

degrees of cure in Figure 6. In this figure, the response of the

material with cure-dependent elastic modulus is compared with

that of the viscoelastic material. For both material models, the

magnitudes of stresses at equivalent strains increase with

increasing degree of cure. For the cure-dependent elastic mate-

rial model, the stresses monotonically increase with time for the

duration of the application of the constant velocity deformation

up to 0.005 s. After 0.005 s, as the strain is held constant, the

stresses also remain constant. For this material model, the

responses at conversions of 0.95 and 0.9 are exactly the same,

and the stress transients perfectly overlap; this can be explained

by inspecting Figures 3 and 4 that show a nearly constant cure

dependent modulus of the material at extremely small times

after a conversion of 0.88 (indicating vitrification).

The use of viscoelastic material model results in significantly

different trends. After 0.005 s, as the imposed strain is held con-

stant, the stresses relax to values significantly lower than those

observed at 0.005 s. The relaxation of stresses relative to the ini-

tial stress value becomes progressively more significant at lower

degrees of cure. This is consistent with the significantly smaller

relaxation times of the crosslinking gel at a conversion of 0.8

compared to the fully cured material at a conversion of 0.95

(refer to Figure 3). The build-up of stresses during the deforma-

tion phase, up to 0.005 s, is significantly lower than that

observed with the cure-dependent elastic material model. The

stress response at conversions of 0.9 and 0.95 are very different,

while the response at these two conversions for the elastic mate-

rial showed perfect overlap. This is consistent with the fact that

even though the relaxation moduli at extremely short times are

very similar at the conversions of 0.88 or higher, the long-time

relaxation behaviors are very different, as observed in Figure 3.

More importantly, the stresses start relaxing even during the ini-

tial 0.005 s when the deformation is still being imposed. This

behavior is most pronounced at the lower conversions, because

the relaxation times of the resin at these conversions are smaller

than even the short timescale of strain imposition. The initial

time response of the viscoelastic material model predictions

closely follows that of the elastic material model only at the

highest conversion of 0.95.

The stress relaxation response for the viscoelastic material

model, at a conversion of 0.8, is plotted in Figure 7 at three dif-

ferent temperatures. It is clear from Figure 7 that as the temper-

ature is lowered, the magnitude of stresses increase in both the

strain build up phase (up to 0.005 s) and the constant strain

phase (beyond 0.005 s). During the strain build-up phase, the

relaxation of stresses is least pronounced at the lowest tempera-

ture. At all times, the resin stresses at 160�C are nearly an order

of magnitude higher than that at 170�C.

Chemical Shrinkage Stresses During Isothermal Cure in a

Fully Constrained Geometry

This is a hypothetical scenario aimed at exploring the evolution

of purely crosslink-shrinkage induced residual stresses in the

resin in the absence of any mechanical strains. Clearly, at low

degrees of cure substantially below the gel point, the state of

completely constrained resin is not practically achievable, since

the viscous resin has a tendency to flow. However, the cure-de-

pendent elastic and viscoelastic material models indirectly

account for the viscous nature of the resin through assignment

of extremely low elastic moduli and extremely small relaxation

time constants, respectively.

In this isothermal simulation, the geometry was assigned a con-

stant and uniform temperature of 170�C (Tref). The chemical

kinetics was solved for at 170�C using eqs. (3)–(8). At any in-

stantaneous degree of cure, and Tref, the time-cure-temperature

shift factors were calculated using either eq. (10) or eqs. (11)

Figure 5. Schematic showing the geometry (not to scale) and thermome-

chanical boundary conditions for the simulation of (a) development of

purely mechanical stresses following rapidly imposed extensional strain in

the resin at a fixed degree of cure at a given temperature, and (b) the evo-

lution of stresses due to chemical crosslink induced shrinkage in a fully

constrained resin undergoing isothermal cure.

Figure 6. Simulated transients of purely mechanical stresses following

rapidly imposed y-direction extensional strain (within 0.005 s) in the resin

at a temperature of 170�C, and three different degrees of cure; comparison

of trends obtained for viscoelastic, and cure-dependent elastic material

models.
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and (12) (depending on whether a < agel or a � agel). The

relaxation spectrum was calculated using eqs. (14) and (15),

and employing the parameters given in Table II (once again, the

choice of parameters was depending on whether a < agel or

a � agel). The viscoelastic shear relaxation modulus was then

evaluated by employing the relaxation spectrum and the shift

factors, using eqs. (16) and (17). The cure dependent elastic

modulus, was allowed to evolve with the degree of cure as

shown in eq. (20), and as seen in Figure 4.

For this simulation, the geometry was fully constrained at all

the edges, thereby setting the mechanical strains to zero [refer

to Figure 5(b)],

n � u ¼ 0 along all the edges of the domain (33)

On the other hand, an overall volumetric shrinkage of 6%

was considered for the fully cured material at 170�C:
DVshrinkage ¼ �0:06. In an unconstrained geometry, this

would result in isotropic shrinkage strains, as shown below

(e.g., Ref. 17).

eShrinkij ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DVshrinkage

3

q
� 1Þdij (34)

However, in a fully constrained geometry, it would result in a

tensile hydrostatic state of stress, incorporated in the pressure

term [refer to eq. (26)] as shown below:

p ¼ �k � ftraceðeÞ � 3eShrinkij g (35)

The evolution of the isotropic crosslink shrinkage stresses can

then be calculated by equally distributing the overall volumetric

shrinkage over the entire cure.

pðaÞ ¼ �k � ftraceðeÞ � 3eShrinkij ag (36)

The evolution of chemical shrinkage stress over the duration of

cure, simulated at 170�C, has been plotted for the three material

models, in Figure 8. The tensile nature of the hydrostatic

stresses in the constrained geometry due to chemical-crosslink

induced shrinkage is seen from the positive values for stresses at

all times. From eq. (36), it can be seen that the evolution of

chemical crosslink induced shrinkage would closely follow the

degree of cure transients (refer to Figure 1). With a constant

elastic modulus, the evolution of shrinkage strains or stresses

would also display the same monotonic evolution as the degree

of cure—as evidenced in the constant elastic material model

response plotted in Figure 8. The evolution of stresses in a ma-

terial with cure dependent elastic material model trails that in a

constant elastic modulus material, because the modulus starts

out as G1 at t ¼ 0, and progressively increases with the degree

of cure. However, once the modulus has evolved completely at

high degrees of cure, the magnitude of stresses is the same as

that in a constant-elastic-modulus material. Thus, upon

achievement of the maximum degree of cure, there is no differ-

ence in the stress response of the material models involving a

constant elastic modulus or a cure-dependent elastic modulus.

In sharp contrast to the two elastic material models, the visco-

elastic material model results in significantly slower buildup of

stresses and lower magnitude of stresses even upon achievement

of the maximum degree of cure. Two regimes of stress relaxa-

tion can be noted. The first phase of stress relaxation occurs

even as the degree of cure is increasing. In the initial stages, at

low degrees of cure, the viscoelastic response is characterized by

low moduli and extremely small relaxation times, leading to

rapid relaxation of stresses to a very low magnitude (G1). Up

to the gel point the resin behaves as a viscous liquid, and does

not develop significant magnitude of stresses. The stresses build

up slowly once high degrees of cure are achieved beyond 2500 s

(after the onset of gel point). The second phase of slow relaxa-

tion of stresses occurs beyond 10,000 s, when the increase in the

degree of cure is relatively slow, and additional shrinkage strains

are not accumulated, while at the same time the relaxation

times of the resin do not get substantially altered. This slow

relaxation of stresses in a completely cured resin would typically

approach the rubbery plateau modulus at extremely long times.

Figure 7. Simulated transients of purely mechanical stresses, following

rapidly imposed y-direction extensional strain (within 0.005 s) in the resin

at a degree of cure of 0.8, and three different temperatures, using the

viscoelastic material model.

Figure 8. Simulated evolution of stresses due to chemical crosslink

induced shrinkage in a fully constrained resin undergoing isothermal cure

at 170�C; comparison of trends obtained for viscoelastic, cure-dependent

elastic, and constant elastic material models.
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Of course the long-time relaxation of stresses at limiting conver-

sion is also driven by the high temperature (170�C); the stress

relaxation would be substantially slower upon cool down to

room temperature. It is clear that accounting for the viscoelastic

behavior of the resin results in significant reduction in the

simulated stress build up during application of strains, and

additional long time relaxation even after achievement of com-

plete conversion.

As mentioned earlier, in this simulation, the overall volumetric

shrinkage has been equally distributed over the entire cure [eq.

(36)]. On the other hand, the model developed by Adolf and

Chambers18 assumes that effective shrinkage accumulates only

after branches develop into effective crosslinks, i.e., after onset

of gelation. Predictions based on gel-point conversion model

may therefore provide relatively larger estimates of residual

stresses based on shrinkage since onset of shrinkage strains is

assumed to occur after the modulus of the resin has developed

into the rubbery region (with relatively longer relaxation times).

The choice of the appropriate shrinkage evolution model

requires characterization of the evolution of shrinkage with the

degree of cure.

Cure-Induced Residual Stresses and Springback in Thick

Sections: A Case Study on Thick Elbow Section

Residual stress development and shape distortions in thick ther-

moset sections are often further influenced by large temperature

gradients across the thickness. Cure reactions are exothermic in

nature, with heats of reaction reaching close to 500,000 J/kg for

some vinyl ester resins (e.g., Ref. 19). During curing the mold

surface temperatures are controlled, but the temperatures within

the core are governed by the heat generation and transfer. In

thin thermoset parts, the large exposed surface area to volume

ratio allows the extraction of the cure exothermic heat despite

the low thermal conductivity of the thermoset resins. However

in thick sections, the exothermic heat cannot be extracted easily

due to the low exposed surface area to volume ratio and large

thermal mass of the resin, and the temperature at the core can

substantially overshoot that at the surface.20 Such large gradients

in temperature result in equally large gradients in the degree of

cure (and the associated resin shrinkage, modulus, and glass

transition temperature) along the thickness of the section. To

understand these effects, the cure-dependent elastic and visco-

elastic models, discussed earlier, are implemented in the context

of the cure of thick sections, to explore the combined effect of

multiple phenomena—mold-part interaction, cure shrinkage

strains, thermal strains, and the exothermic heat of reaction

resulting in a two way coupling between heat transfer and

chemical kinetics—on the evolution of residual stresses and

springback.

Problem Definition

The geometry and thermomechanical conditions for this simu-

lation involving a hypothetical scenario associated with the cure

of a thick right-angled elbow section are depicted in Figure 9.

Figure 9. The geometry, and mechanical boundary conditions, for simulation of the evolution of residual stresses during (a) the cure of a thick thermo-

set elbow geometry constrained between two structural steel molds, followed by (b) partially constrained heating of the cured thermoset part under point

constraints. The corresponding thermal cycles imposed on all the exposed edges of the geometry are shown in (c) and (d), respectively. The evolution of

temperature, cure, and stresses are investigated along the diagonal traversing the thickest portion of the thermoset resin in the elbow geometry at the

points A (0,0), B (0.0025,0.0025), C (0.01358,0.01358), D (0.0175,0.0175), and E (0.02, 0.02) [refer to Figure 9(a)].
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This simulation is implemented in two stages: (I) the first stage

involves the cure of a 2-cm thick thermoset in the shape of a

right-angled elbow, with the longer (outer) dimension of each

arm 10 cm, under constraint between two 5-mm thick structural

steel molds [Figure 9(a)] —to study the evolution of residual

stress; (II) the second stage involves the re-heating of the cured

elbow geometry (after removal of the molds) under point con-

straints [Figure 9(b)]—to explore spring-back effects. The thermal

cycle for the first phase, with duration of 10,000 s, is shown in

Figure 9(c), and is imposed on all the external boundaries of the

geometry shown in Figure 9(a). The thermal cycle involves a heat-

ing phase from 373 to 433 K within 300 s, an isothermal hold at

433 K for the next 4700 s, cool down to 373 K within the next 300

s, and a second isothermal hold at 373 K for the next 4700 s. The

heating cycle for the second phase, for a subsequent duration of

5000 s, is shown in Figure 9(d), and is imposed on all the edges of

the cured resin shown in Figure 9(b). This thermal cycle involves a

heating phase from 373 to 423 K in 1000 s, followed by an isother-

mal hold at 423 K for the next 4000 s. As shown in Figure 9(a),

during the first thermal cycle, the exposed long edges of the struc-

tural steel molds are fixed. The short edges of the mold, along the

mold thickness, and the exposed surfaces of the resin are free to

deform. The perfect contact (equal displacement) is imposed on

the internal boundaries involving the resin-mold interface. During

the second heating cycle, the mold constraints are removed, and

the cured elbow is constrained at only two points [points F and

G, in Figure 9(b)] to prevent any solid body rotation. In both

phases of the simulation, any impact of the resin viscosity and

gravity on the flow-induced resin rearrangement and convective

heat transfer are ignored. The relevant thermomechanical proper-

ties of the structural steel mold are listed in Table IV (adopted

from Ref. 21).

The cure kinetics is described by eqs. (3)–(8), along with the

parameters listed in Table I. The cure kinetics simulation is car-

ried out only within the resin subdomain. The conductive heat

transfer within the structural steel molds is defined as shown

below.

qCP

@T

@t
�r � ðk � rTÞ ¼ 0 ðmoldÞ (37)

In the above equation, q, Cp, and k are, respectively, the density,

specific heat, and thermal conductivity of the material. The con-

ductive heat transfer within the curing resin accounts for the

heat generation due to the exothermic heat of reaction, as

shown below.

qCP

@T

@t
�r � ðk � rTÞ ¼ qDHreaction

da
dt

ðresinÞ (38)

As seen above, the rate of heat evolution during cure is gov-

erned by the overall enthalpy of the cure reaction (DHreaction)

and the instantaneous rate of reaction. The heat generation

term on the right hand side provides a two-way coupling

between the heat and the mass balances—the progress of cure

results in generation of exothermic heat, which in turn increases

the reaction rates. The magnitude of DHreaction employed for

this simulation is typical of epoxy resins (e.g., Ref. 17) and is

listed in Table III.

The structural mechanics problem definition, involving plane

strain approximation, is shown in eqs. (30) and (31). In the

first phase involving the mold-constrained cure of the resin, the

momentum balance [eq. (30)] addresses the development of re-

sidual stresses in the curing resin due to the differential thermal

strains between the structural steel mold and the thermoset, and

also due to chemical shrinkage strains. In the second phase, the

momentum balance addresses the combined impact of the re-

sidual stresses developed in the first stage, and the additional

thermochemical strains, on the springback behavior of the cured

resin heated under point constraints. The coefficients of linear

thermal expansion (v) of the epoxy resin (representative value

for epoxies (e.g., Ref. 16), and the structural steel21 are listed in

Tables III and IV, respectively. The evolution of the isotropic

(hydrostatic) stresses due to thermal strains in the structural

steel molds, is incorporated in the pressure term [refer to eqs.

(25) and (26)] as shown below:

pðTÞ ¼ �k � ftraceðeÞ � 3vðT � Tref Þg ðmoldÞ (39)

For this analysis, the reference temperature for thermal strains

was taken to be 373 K. On the other hand, the isotropic (hydro-

static) stresses generated in the thermoset resin are a combina-

tion of thermal stresses and those arising due to chemical

shrinkage, and the corresponding isotropic pressure term [refer

to eqs. (25) and (26)], can be expressed as shown below.

pðT ; aÞ ¼ �k � ftraceðeÞ � 3eShrinkij a� 3vðT � Tref Þg ðresinÞ
(40)

The details of implementation of this simulation are briefly

described in the Appendix.

Evolution of Temperature, Degree of Cure, and Residual

Stresses

The temperature and degree of cure transients in the thermoset

resin during the first cure cycle within the mold—at the points

A–B–C–D–E along the diagonal traversing the thickest portion

of the thermoset resin in the elbow geometry [refer to Figure

9(a)]—are shown in Figure 10(a,b), respectively. At points A

and E, which are in contact with the corners of the structural

steel molds, the temperature transients mimic the imposed ther-

mal cycle on the outer surfaces of the molds [Figure 10(a)].

Because of the high thermal conductivity of structural steel, the

molds offer insignificant thermal barrier to heat transfer into

Table IV. Relevant Thermal and Mechanical Properties of Structural

Steel21

Density (kg/m3) q 7.85 � 103

Specific heat (J/kg K) CP 475

Thermal conductivity (W/m K) k 44.5

Young’s modulus (GPa) E 200

Poisson’s ratio m 0.33

Coefficient of thermal
expansion (ppm/K)

v 12.3
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the resin. The degree-of-cure transients also evolve similarly at

points A and E [Figure 10(b)].

By virtue of the right angled elbow geometry, the conductive

heat transfer from the resin to the two proximal mold walls is

enhanced in the vicinity of the location A, whereas a major

portion of conductive heat transfer at the location E, at the re-

entrant (convex) inner mold corner, occurs towards the resin.

The thermal mass of the resin and the thermal gradients within

the resin—further enhanced by the exothermic heat of the cure

reaction—are therefore significantly higher in the vicinity of

point E as compared to the vicinity of point A. At location B,

the enhanced conductive heat transfer to the proximal mold

walls in the vicinity of corner A results in a quick rise of tem-

peratures in the initial heating phase, only minor deviations

from the isothermal hold temperature due to rapid removal of

exothermic reaction heat, and a cool-down ramp similar to that

imposed on the mold walls [Figure 10(a)]. Consequently, the

degree of cure transient at B is also very similar to those at

locations A and E [Figure 10(b)].

By contrast, the temperature rise at locations C and D, which

are closer to the re-entrant corner E, significantly trails the

mold heating cycle [Figure 10(a)]. The progress of cure is also

substantially slower at points C and D, compared to A, B or E,

for the initial 1000 s [Figure 10(b)]. However, as cure pro-

gresses, the exothermic heat evolving at C and D cannot be

dissipated fast enough (owing to the thickness of the part and

the poor conductive heat removal to the mold walls in the vi-

cinity of E) and the temperature at the these points rises above

that at the mold surface [Figure 10(a)]. This in turn leads to

faster reaction at these locations and therefore more heat due

to the reaction exotherm. At the timescales corresponding to

the temperature maximum [cf. Figure 10(a)] the conversion at

the locations C and D also shows a rapid increase and exceeds

that at the surfaces [Figure 10(b)]. The maximum tempera-

tures due to the exothermic heat of reaction (�20�C above the

mold temperatures) are achieved at the location C, which is

not in the exact middle of the thickness of the elbow, but

nearer to the re-entrant corner (point E). During the cool-

down period starting at 5000 s, the temperature drop is also

slowest at the location C. From a comparison of Figure

10(a,b), it can be seen that the final degree of cure achieved at

the end of the cycle at any given location is clearly a function

of the maximum temperature achieved at that location. How-

ever, since the exothermic temperature rise lasts only for a

small portion of the first isothermal hold, as seen in Figure

10(a), the final degrees of cure at the various points are still

dominated by the diffusion controlled limiting conversion cor-

responding to the hold temperature [eqs. (6)–(8)], and do not

show a very large spread.

The thermochemical residual stress transients within the curing

thermoset resin were estimated by the simultaneous FE solu-

tions of the kinetic model, the heat balance, and the momen-

tum balance (the implementation details are laid out briefly in

the Appendix). In Figure 11(a), the transients of the maximum

principal stress during the first cure cycle within the mold, esti-

mated for an elastic resin with a cure- and temperature-depend-

ent elastic modulus [refer to eq. (20)] have been plotted at the

points A–B–C–D–E [cf. Figure 9(a)]. At location A, the stresses

start building up around 2000 s, which corresponds to the

achievement of the gel point conversion (a ¼ agel ¼ 0:7) of the

thermosetting resin. Prior to 2000 s, at degrees of cure substan-

tially below the gel point, the magnitudes of moduli are quite

insignificant to result in any stresses owing to thermal expan-

sion due to temperature increase in the first 300 s [cf. Figure

10(a)] or the development of shrinkage strains up to the gel

point. As limiting conversion is attained, the magnitude of

stress stabilizes, up to 5000 s. Starting at 5000 s, during the

cool-down phase, the stresses increase once again, due to the

onset of constrained thermal shrinkage during cool-down, and

stabilize at the final value.

While the location A is subjected to the constraining effects of

the mold (owing to the concave corner, and also enhanced

conductive heat transfer from the resin to the mold) at the loca-

tions C, and D, the resin is relatively unconstrained (the loca-

tions B and E may be considered partially constrained by the

mold corners); therefore the development of stresses at C and D

is not only impacted by the instantaneous temperature and

degree of cure, but also the spatial gradients in temperature and

conversion in the vicinity of these points. Consequently, the

Figure 10. The simulated evolution of (a) temperatures, and (b) degrees

of cure, in the thermoset resin at the points A–B–C–D–E [refer to Figure

9(a)] during the first cure cycle within the mold for 10,000 s.
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evolution of stresses at these locations slightly deviates from

that at points A, B, and E as seen in Figure 11(a).

For an elastic resin, however, the differences in the evolution of

stress transients notwithstanding, the final state of stress distri-

bution within the bulk of the section is governed primarily by

the final state of distribution of the degree of cure and tempera-

tures within the resin. Since the spatial distribution of the final

degree of cure at 10,000 s is not very broad [refer to Figure

10(b)], and the temperatures are spatially invariant, the distri-

bution of stresses within the bulk, as demonstrated by the mag-

nitudes of the maximum principal stresses at points B, C, and

D, is also relatively narrow.

In Figure 11(b), the evolution of the maximum principal

stresses estimated for a linear viscoelastic resin with a cure- and

temperature-dependent relaxation spectrum have been plotted

at the points A–B–C–D–E during the first cure cycle within the

mold. In the viscoelastic scenario, all the thermo-chemo-me-

chanical mechanisms underlying the development of residual

stresses discussed in the context of the elastic material model

apply, but additionally, the viscoelastic relaxation of stresses also

comes into effect. Comparison of Figure 11(a,b) reveals,

consistent with the earlier discussion on model load-case sce-

narios, that accounting for viscoelastic stress relaxation results

in relatively lower estimates for stresses compared to those

obtained with the linear elastic material model. Even after the

onset of gel point (between 2000 and 5000 s) the stresses in

the viscoelastic material undergoing cure are insignificant since

the relaxation times continue to remain fairly small up to very

close to the limiting conversions. Relaxation of the stresses

within the core (locations C and D) during the isothermal

hold up to 5000 s is further expedited by the high tempera-

tures at the core due to the exothermic heat. After 5000 s,

since the locations C and D cool down much slower than the

mold [cf. Figure 10(a)] these locations experience significant

dwell-times at temperatures which are substantially higher

than the mold temperatures; this allows quicker relaxation of

stresses brought about by thermal shrinkage, and slower build-

up of stresses. However, at the points A and B, since the cool-

down occurs at nearly the same rate as that at the mold, the

stresses do not relax as rapidly, and therefore build up faster to a

significantly greater value compared to the stresses at C and D

(and comparable to that estimated with the elastic material

model). Therefore, at the end of cure, even though the tempera-

tures are spatially invariant, and the distribution of final degree

of cure is not very broad, the distribution of stresses within the

bulk, as demonstrated by the magnitudes of the maximum prin-

cipal stresses at points B, C, and D, is quite broad, owing to the

significantly different thermal history at point B compared to

those at points C and D.

The spatial distribution of the maximum principal stresses—

estimated with the elastic material model and the linear visco-

elastic material model—at the end of the first cure cycle (10,000

s) are shown in the form of contour maps in Figure 12(a,b),

respectively. Figure 12(a,b) also shows the deformations brought

about by the cure of the resin. The edges of the thermoset in

contact with the mold are for all practical purposes fully con-

strained due to the large difference between the coefficients of

linear thermal expansion of the mold and the resin. However,

the two exposed edges of the curing resin, which are con-

strained by the steel molds at their end points alone, deform

into a concave arc as a result of the shrinkage strains. The dis-

placements as the result of shrinkage strains in the exposed

edges are greater for the viscoelastic material than for the elastic

material. As discussed earlier, significant stress gradients along

the diagonal of the elbow geometry may be observed in the case

of the viscoelastic material [Figure 12(b)]. At the same loca-

tions, the stresses in the elastic material, though relatively higher

in magnitude, show little variation [Figure 12(a)].

It needs to be noted here that the stresses at the end of the first

cure cycle, estimated from these simulations, plotted in Figure

11(a,b) (as well as Figure 12) are almost an order of magnitude

higher than the typically observed tensile strengths (�60–80

MPa22) of structural epoxy resins which are employed as matri-

ces in structural fiber reinforced composites, and also signifi-

cantly exceed the highest magnitudes of residual stresses (�100

MPa17) reported in a cure simulation study of thick continu-

ous-fiber-reinforced epoxy-matrix composites There are several

assumptions in the current simulations that can contribute to

Figure 11. The estimated transients of in the maximum principal stress at

the points A–B–C–D–E [refer to Figure 9(a)], obtained by employing (a)

a linear elastic material model with a cure- and temperature-dependent

resin elastic modulus, and (b) a viscoelastic material model with cure-

and temperature-dependent resin relaxation spectrum.
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these high estimates: (1) The thermal cycle that has been

employed in these simulations covers temperatures which lie

outside the experimental characterization temperature range

(150–170�C) of Eom et al.1 However, the same empirical rela-

tionships for temperature dependence of the modulus have

been assumed to apply all the way to room temperatures. The

room temperature elastic modulus at the limiting cure in this

simulation, estimated using the extrapolation of the Eom et al.

model, is 7.98 GPa. Considering that the Eom et al.1 epoxy sys-

tem is similar to the typical structural epoxies, the estimated

modulus is about twice the typically reported room temperature

modulus values for these epoxies.22 (2) Moreover, the overall

volumetric shrinkage (6%) and the coefficient of linear thermal

expansion (100 ppm) have been set at the higher limit of the

typically observed ranges for this material.16,17 These assump-

tions would cause the overestimation of residual stresses by fac-

tors of 2–3. (3) Also, the current simulations are carried out

only for the neat resin, and not a composite. In an actual con-

tinuous fiber-reinforced composite system, the matrix volume

fractions are only 30–40%. The stresses associated with cure

shrinkage, which occur only within the matrix, will be substan-

tially reduced in the composite compared to the neat resin. The

stresses due to thermal strains will also be reduced in the com-

posite due to the lower coefficients of thermal expansion of the

fibers which form the major component of the composite.

Therefore, even though the results in Figures 11 and 12 suggest

extensive damage in the epoxy resin, such stresses will not be

achieved in composite systems of the same section thickness in

which the epoxy matrix forms only a fraction. More impor-

tantly, these simulation trends also underscore the necessity to

characterize the viscoelastic properties of the resin not only at

cure temperatures but also at ambient and intermediate temper-

atures to avoid overestimation of residual stresses during

cool-down.

The temperature, cure, and stress distributions, the latter shown

in Figure 12, at the end of the first cure cycle provide the initial

conditions for the second phase involving the heating of the

cured elbow (after removal of the molds) under point con-

straints. The mechanical and thermal boundary conditions for

this simulation are shown in Figure 9(b,d), respectively. The re-

moval of the molds and the heating would result in the relaxa-

tion of the thermochemically induced residual stresses that

developed under the constraint of the molds during the first

phase of curing. Figure 13(a,b) shows the final shapes of the

cured resin elbow at the end of the second heating cycle, pre-

dicted with cure-dependent elastic and viscoelastic models,

respectively. Upon removal of the mold constraints, shrinkage

of the arms of the elbow is observed with both elastic and

viscoelastic material models. In case of the elastic material

model [Figure 13(a)] the deformed concave shape of the short

edges of the elbow instantaneously straightens out, indicating

the release of elastic stored energy upon release of constraints.

Moreover, for the elastic material model, in the absence of sig-

nificant variation in stresses along the diagonal of the elbow (at

the end of the first cure cycle), the residual stresses are relieved

uniformly across the thickness of the elbow upon removal of

constraints; this results in uniform shrinkage across the thick-

ness of the part, and thus there is no shape distortion (or bend-

ing). As seen in Figure 13(b), in case of the viscoelastic material

model, the deformed concave shape of the short edges of the

elbow is maintained even upon removal of mold constraints

and heating, indicating the relatively insignificant magnitudes of

elastic stored energy due to viscoelastic relaxation of stresses.

Moreover, for the viscoelastic material model, in the presence of

large gradients in stresses across the diagonal of the elbow (at

the end of the first cure cycle), the removal of mold constraints

results in non-uniform shrinkage across the thickness of the

part (with the maximum shrinkage occurring in areas corre-

sponding to the maximum residual stresses), and thus there is

significant shape distortion (or bending) in the viscoelastic

material.

It is clear from the foregoing, that while the viscoelastic model

leads to relatively lower stress estimates within the thermoset

resin, it has more significant consequences in terms of capturing

details associated with the evolution of severe stress-gradients

during constrained cure of thick sections and the subsequent

shape-distortion effects accompanying springback.

SUMMARY

The numerical implementation of the multiphysics problem,

involving chemo-thermo-visco-elastic couplings, has been suc-

cessfully demonstrated in the context of development and

Figure 12. The contour map of the estimated maximum principal stress

[MPa], and the deformation of the geometry, at the end of the first mold-

constrained [cf. Figure 9(a,c)] cure cycle (at 10,000 s) estimated by

employing (a) a linear elastic material model with a cure- and tempera-

ture-dependent resin elastic modulus, and (b) a viscoelastic material

model with cure- and temperature-dependent resin relaxation spectrum.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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relaxation of mechanical or crosslink-shrinkage induced stresses

in a curing epoxy-amine thermoset. Phenomenological aspects

such as diffusion limited cure kinetics, incomplete cure, the

viscoelastic behavior of the resin before as well as after the onset

of gelation, and the evolution of the resin relaxation spectrum

with the degree of cure have been captured in detail. The simu-

lated trends in viscoelastic stresses at different degrees of cure

and temperatures are compared and contrasted with those

obtained from two additional equivalent material models—one

involving a constant (cure- and temperature-independent) elas-

tic modulus, and another involving a cure—dependent (but

time-invariant) elastic modulus.

It is observed from these simulations that while the instantane-

ous stresses in a linear elastic material with constant or cure-de-

pendent modulus, are only governed by the instantaneous states

of temperature and degree of cure, the stresses in a viscoelastic

material are strongly governed by the thermal history experi-

enced by the resin. At equivalent final states of conversion and

temperatures, it is seen that a viscoelastic resin typically devel-

ops lower degrees of stress as compared to an equivalent elastic

resin, and also displays additional long-time relaxation even af-

ter achievement of the limiting conversions. More significantly,

simulations with viscoelastic material model of residual stress

development during cure of thick thermoset resin parts indicate

that the spatial gradients in temperature and cure (enhanced by

the exothermic heat of reaction) can result in significant spatial

variation of viscoelastic residual stresses even after equilibration

of the temperature fields and achievement of uniform cure;

these subtle effects, which have a significant impact on the

springback behavior, are not captured by simulations with elas-

tic material models. These trends underscore the need for

detailed and accurate viscoelastic material models for thermoset

resins, adhesives, and composites for realistic estimates of resid-

ual stresses and springback behavior.

APPENDIX

COMSOL Multiphysics
VR

Version 3.5a Subroutine Details for

Implementation of the Model11

This section briefly describes the field settings that were

employed within the relevant subroutines of COMSOL Multi-

physics
VR

Version 3.5a to implement the various aspects of the

model to carry out the simulation of cure-induced residual

stresses and springback in the thick elbow section (refer to Fig-

ure 9). The simpler load case implementations discussed in the

context of Figures 5–8 employed similar field settings.

Curing Stage Simulation

Implementation of the Kinetics Model. The chemical kinetics

model [eqs. (3)–(8)] was implemented using the standard

‘‘COMSOL Multiphysics’’ (Version 3.5a) module. The ‘‘Diffusion

(Transient Analysis)’’ model was chosen from the ‘‘Convection

and Diffusion’’ Application Mode of this module. The diffusion

model was solved only within the ‘‘Curing Resin’’ subdomain

(refer to Figure 9) as a purely time-dependent (spatially invari-

ant) problem by setting the ‘‘Diffusion Coefficient (Isotropic)’’ to

zero within the ‘‘Subdomain Settings.’’ The ‘‘Reaction Rate’’ term

was set to a logical expression shown below to capture the con-

version dependent reaction rate defined by the kinetic model.

if(Conv<Conv_gel,Rate_Low_Conv,Rate_High_Conv)

In the above expression, Conv_gel ¼ 0.7, Rate_Low_Conv is

defined in eq. (3), and Rate_High_Conv is defined in eq. (6)

(also refer to Table I). The boundary conditions at all the

‘‘Curing Resin’’ subdomain boundaries were set to ‘‘Insulation/

Symmetry’’ (no material diffusion across the boundaries).

Implementation of the Heat Transfer Model. The heat trans-

fer model [eqs. (37) and (38)] was implemented using the

standard ‘‘COMSOL Multiphysics’’ (Version 3.5a) module. The

‘‘Conduction (Transient Analysis)’’ model was chosen from the

‘‘Heat Transfer’’ Application Mode of this module. The con-

duction model was solved within both the ‘‘Curing Resin’’ as

well as the ‘‘Mold’’ subdomain (refer to Figure 9) in the ‘‘Tran-

sient Analysis’’ mode. Within the ‘‘Curing Resin’’ ‘‘Subdomain

Settings,’’ the ‘‘Heat Source’’ term was set to account for the

exothermic heat of reaction [eq. (38)], using a logical expres-

sion to account for different kinetic regimes. This established

the two-way coupling between the Kinetics and Heat Transfer

models.

if(Conv<Conv_gel,-rho_smpn*DH_Reaction*

Rate_Low_Conv,-rho_smpn*DH_Reaction*

Rate_High_Conv)

In the above expression, DH_Reaction is the heat of reaction (refer

to Table III) The heat cycle shown in Figure 9(c) was imposed as

Figure 13. The surface map of total displacement, and the boundary de-

formation of the cured elbow geometry at the end of the second partially

constrained [cf. Figure 9(b,d)] cure cycle (at 15,000 s) estimated by

employing (a) a linear elastic material model with a cure- and tempera-

ture-dependent resin elastic modulus, and (b) a viscoelastic material

model with cure- and temperature-dependent resin relaxation spectrum.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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the ‘‘Temperature’’ ‘‘Boundary Setting’’ in the form of a logical

expression on all the exposed boundaries [see Figure 9(a)].

Implementation of the Viscoelasticity (Structural Mechanics)

Model. The structural mechanics problem [eqs. (30) and (31)]

was implemented using the ‘‘Structural Mechanics’’ Module

(Version 3.5a). The ‘‘Transient Analysis’’ model was chosen from

the ‘‘Plain Strain’’ Application Mode.

The ‘‘Mold’’ subdomain was modeled as ‘‘Isotropic’’ structural

steel, and the material parameters listed in Table IV were

entered in the relevant fields of the ‘‘Material’’ tab of the ‘‘Sub-

domain Settings.’’ The automatic calculation of the thermal

expansion stresses was activated for the ‘‘Mold’’ subdomain by

activating the relevant fields within the ‘‘Load’’ tab of ‘‘Subdo-

main Settings.’’

The ‘‘Curing Resin’’ subdomain was modeled using the ‘‘Visco-

elastic’’ Material Model. The shear relaxation modulus was

defined as shown in eq. (17). In the ‘‘Material’’ tab of the ‘‘Sub-

domain Settings,’’ the long term shear modulus (0.01) was

specified in the field corresponding to ‘‘Shear Modulus.’’ The

moduli and relaxation times for the 34-coefficient Prony series

were each defined separately as a ‘‘Global Expression. Each indi-

vidual expression accounted for the relevant cure and tempera-

ture shift corresponding to the conversion regime [refer to dis-

cussion around eqs. (10)–(15), and also Table II]. The

corresponding expression ‘‘Name’’ was entered within the fields

specifying the Prony series ‘‘Branch’’ on the ‘‘Materials’’ tab of

the ‘‘Subdomain Settings.’’ A ‘‘Global Expression’’ corresponding

to eq. (19) was entered in the field ‘‘Bulk Modulus.’’ The auto-

matic calculation of thermal stresses was not activated within

this subdomain. Instead, both thermal as well as cure shrinkage

strains were accounted for as given in eq. (40) by modifying the

expression for the ‘‘Application Mode Subdomain Variable’’ ‘‘p’’

within the ‘‘Variables’’ tab of the ‘‘Equation System’’ ‘‘Subdomain

Settings’’ as shown below

-K_smpn*(evol_smpn-3*CTE_mat*(T-373)-

3*(((1-DV_Shrinkage)^(1/3))-1)*Conv)

All the three ‘‘Physics’’ definitions, including the ‘‘Plain Strain’’

were solved in the ‘‘Transient Analysis’’ mode. It should be

noted that a separate ‘‘Viscoelastic Transient Initialization’’ step

was not required for the solution in this scenario since no high-

strain-rate/step-strain type load was imposed on the geometry;

since the thermochemical strains evolved over a relatively long

time, the analysis could be treated as a pure transient analysis.

The simulation was carried out for 10,000 s using the ‘‘Direct

(SPOOLES)’’ solver with the ‘‘BDF’’ Method of ‘‘Time Stepping.’’

For the curing stage simulation, refinement of mesh was carried

out to the extent that convergence of simulation was obtained.

Of the three physics, conductive heat transfer was most sensitive

to the relative coarseness/fineness of the mesh; with a very

coarse mesh, the heat transfer simulation failed to converge

when the onset of exothermic temperature rise occurred. To

overcome this issue, a graded triangular mesh was employed,

with relatively coarse meshing in the exposed edges of the

elbow, and progressive refinement in the regions where the

most significant thermal and stress gradients were expected (the

elbow corners). The final mesh employed for the simulations

was composed of 396 triangular elements.

Post-Cure Reheating-Induced Springback Simulation. After

the mold-cure simulation described above, for the reheating

phase, the thermal cycle shown in Figure 9(d) was imposed as

the ‘‘Temperature’’ boundary condition within the ‘‘Conduction

(Transient Analysis)’’ physics, on all the boundaries of the ‘‘Cur-

ing Resin’’ subdomain. Point constraints, as shown in Figure

9(b) were imposed using the ‘‘Point Settings’’ within the ‘‘Plain

Strain (Transient Analysis)’’ physics. All the three physics were

then solved using the ‘‘Restart’’ button within the ‘‘Solver’’ drop-

down menu, this time only within the ‘‘Curing Resin’’

subdomain. The ‘‘Restart’’ option was used—combined with ini-

tialization of variables using the ‘‘Stored Solution’’ from the ear-

lier cure phase—to enable accounting for the state of cure, tem-

perature and stresses within the subdomain at the end of the

mold-cure simulation. The solution was carried out in the time

range 10,000–12,000 s using the ‘‘Direct (SPOOLES)’’ solver

with the ‘‘BDF’’ Method of ‘‘Time Stepping.’’
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